

Description

The LP3515 is a high performance second side synchronous rectifier for isolated flyback application in which a synchronous power MOSFET is integrated. The LP3515 is suitable for charger application which the high transfer efficiency is required.

The LP3515 can avoid mis-operation caused by the demagnetization oscillation efficiently by using proprietary primary side turn on estimation and secondary side current discontinuous judgment technology. LP3515 also involves proprietary VCC supply technology which can ensure the IC can work normally in primary side CC and CV working mode.

The LP3515 provides many protections which include VCC UVLO, VCC over voltage clamping, output short max on time shunt down and the DRV pin interference suppression.

Second-Side Synchronous Rectifier

Features

- Isolated DCM mode application.
- 45V Power MOSFET integrated
- Proprietary Primary Side Turn On Estimation
- Secondary Side Current Discontinuous Judgment
- Proprietary VCC Supply Technology
- VCC Pin UVLO Protection
- VCC Over Voltage Clamping
- DRV Pin Noise Suppression
- Few Peripheral Device
- SOP7 Assembly

Application

- Schottky diode replacement for flyback.
- Suitable for 5V/2A US DoE IV application.
- Charger and Adapter.

Typical Application

The LP3515 is available in SOP7

Figure 1: Typical Application Circuit

Second-Side Synchronous Rectifier

Ordering Information

Version	Package	Packing Form	Marking
LP3515	SOP7	Tape	LP3515
		3,000 piece/Roll	Bxxxx

Pin Definition

Bxxxx: IC Indetifier

Terminal Description

Number	Definition	Description
1	AE	Primary side turn on estimation setting pin
2	VCC	The power supply pin for the IC
3, 4	GND	The ground pin of the IC
5, 6	D	The Drain Pin of the integrated MOSFET
7	DET	The voltage supply and judgment pin of the IC

Second-Side Synchronous Rectifier

Symbol	Description	Parameter Scope	Unit	
DET	Internal voltage supply and voltage sense pin	-0.3~48	V	
D	The Drain Pin of the integrated MOSFET	-0.3~45	V	
VCC	The IC supply voltage	-0.3~8	v	
AE	Judgment Setting Pin	-0.3~8	V	
P _{DMAX}	The power dissipation(note2)	0.45	W	
θ_{JA}	The thermal resistance from junction to ambient	120	°C/W	
θ_{JC}	The thermal resistance from junction to tube	60	°C/W	
TJ	Operating junction temperature range -40 to 150		°C	
T _{STG}	The storage temperature range -55 to 150		°C	
	ESD (note 3)	2	KV	

Absolute Maximum Ratings (note 1)

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAX} , θ_{JA} , and environment temperature (T_A) . The maximum power dissipation is the lower one between $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ and the number listed in the maximum table.

Note 3: Human Body mode, 100pF capacitor discharge on $1.5K\Omega$ resistor

Second-Side Synchronous Rectifier

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
Supply Voltage Section								
V _{CC}	V _{CC} Operating Voltage	Drain=20V		5.5		V		
V _{CC_ON}	V _{CC} Startup Voltage	V _{CC} Rising		3.6		V		
V _{CC_UVLO}	V _{CC} UVLO Voltage	V _{CC} Falling		3.2		V		
I _{ST}	V _{CC} Startup Current	$V_{CC} = V_{CC-ON} - 0.5V$		50		uA		
Icc	V _{CC} Working Current			120		uA		
Vcc_clamp	V _{CC} Clamp Voltage	I _{CC} =40mA		6.2	X	V		
Voltage Sense Section								
SR_ON	MOS Turn on Threshold		N N	0.5	Y	V		
SR_OFF1	First Turn off Threshold		\sim	-15	P	mV		
SR_OFF2	Second Turn off Threshold			-5		mV		
Judgment Set	ting			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$				
T_SRmin	The Minimum turn on time		2.1	2.2	2.3	us		
S_AE	The primary voltage integration setting	R _{AE} =100Kohm	25.5	27.0	28.5	us*V		
R_AE	Secondary discontinuous judgment ratio	X Y		80		%		
Driving Ability								
T _{RISE}	Driving rising time	C _{GATE} =1nF			25	ns		
T _{FALL}	Driving falling time	C _{GATE} =1nF			25	ns		
MOSFET Section								
R _{DS_ON}	MOSFET On resistance	$V_{GS} = 6.5 V / I_{DS} = 0.1 A$			15	mΩ		
BV _{DSS}	MOSFET BVdss	V _{GS} =0V/I _{DS} =25uA	45			V		

Electrical Characteristics (Notes 4, 5) (Unless otherwise specified, V_{CC}=5V and T_A=25 °C)

Note 4: production testing of the chip is performed at 25 $^{\circ}$ C.

Note 5: the maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

Second-Side Synchronous Rectifier

Internal Block Diagram

Figure 3: Internal Block Diagram

Application Information

The LP3515 is a high performance second side synchronous rectifier for isolated flyback application in which a synchronous power MOSFET is integrated. The LP3515 can avoid mis-operation caused by the demagnetization oscillation efficiently by using proprietary primary side turn on estimation and secondary side current discontinuous judgment technology. LP3515 also involves proprietary VCC supply technology which can ensure the IC can work normally in primary side CC and CV working mode.

Startup

When the system power on, the output capacitor will be charged by the parasitic body diode of the MSFET and the output voltage will rise .The VCC capacitor of the IC will be charged by the DET pin and when the VCC voltage rise above the startup voltage the IC will operate normally.

Turn On of the SR

When the flyback working at the DCM mode, the DET voltage will oscillate after the second side current fall to zero because of the demagnetization effect. In order to avoid the mistakenly turning on of the SR, the LP3515 uses proprietary primary side turn on estimation technology. When the primary side IC turn on, a flyback voltage will be generated between the secondary side gnd and the LP3515 GND, when the integrated value of the said flyback voltage excess a setting value and the DET pin

voltage falls below 0.5V, the LP3515 will turn on the synchronous MOSFET correctly.

Turn Off of the SR

After the SR is turned on , the DET pin voltage will oscillate because of the parasitic capacitor and the leakage inductor. The said oscillate DET voltage will cause the mistakenly turning off of the MOSFET. In order to avoid this phenomenon, the LP3515 involves secondary side current discontinuous judgment technology.

Through managing the flyback voltage sensed by the AE pin internally and setting the first and second voltage threshold, the LP3515 will turn off the MOSFET correctly.

AE Resistor Setting

 $R_{AE}=3.7\times S_{AE}$

 $R_{AE}\text{:}\ AE$ resistor, units: $K\Omega$

 S_{AE} : The voltage seconds Size, Units: uS*V

How to set S_{AE}

In light load and $85V\sim265V$, please measure the voltage between the DET pin and the GND pin of the LP3515 which is shown by the following waveform. The S_{AE} must satisfies the following formula:

 $(1.2 \times U2 \times t2) < S_{AE} < (0.9 \times U1 \times t1)$

The Resistor Setting between DET and D Pin

The reasonable resistor value show be smaller than 200 ohm. Higher resistor value will increase the ESD ability and decrease the supply current.

Protection Functions

The LP3515 provides many protections which include VCC UVLO, VCC over voltage clamping, output short max on time shunt down and the DRV pin interference suppression.

PCB Layout

The following rules should be followed in LP3783 PCB layout:

Bypass Capacitor

The bypass capacitor on V_{CC} pin should be as close as possible to the V_{CC} Pin and GND pin.

AE Resistor

AE resistor should be put as close as to the AE pin and the secondary gnd.

D Pin

To increase the copper area of D pin for better thermal dissipation.

Second-Side Synchronous Rectifier

Physical Dimensions

